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ABSTRACT

™~

A A new shape normalization for non-uniformly active isothermal catalyst
pellets is developed. It is based on the volume average of catalyst activity
in a thin reaction zone near the external surface of the active catalyst
region, wherein the reaction occurs in the diffusion-controlled regime. This
normalization permits inclusion of those catalyst activity profiles that

become zero at the external surface of the catalytically active region, which

were excluded from previous normalizations. When the surface activity is

nonzero, results reduce to those ohtained earlier, e The normalization
i B \/4/

1 provides exactly the slope of the effectiveness factor - Thiele modulus
curves, for all pellet shapes and activity profiles, in the limit of
diffusion-control. The development is initially made for first-order

reactions, and then generalized to include arbitrary reaction rate

expressions. Effects of finite external mass transfer resistances are also

3 : discussged. €
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SIGNIFICANCE AND EXPLANATION

The effect of diffusion on the rate of chemical reaction in a catalyst
pellet is evaluated by the so-called "effectiveness factor," which is the
ratio of the actual rate of reaction and that in the abhsence of transport
limitations. For an isothermal first-order reaction, the effectiveness factor
is a function of the pellet geometry, the Thiele modulus (which represents how
fast the reaction is, relative to diffusion), and the Biot number (which
represents the facility of external mass transfer to the pellet, relative to
diffusion). If the pellet is uniformly active catalytically, then Aris showed
in a classic work [Chem. Eng. Sci., 6, 262 (1957)] that the lenj;th dimension
used in defining the Thiele modulus and the Biot number could be so redefined,
in a physical manner, that the asymptotic behavior of the effectiveness factor
for large values of the Thiele modulus (i.e,, the diffusion;controlled regime)
was identical for various pellet shapes. Fortunately with such a redefini-
tion, the effectiveness factor versus Thiele modulus curves, for the entire
ranqe of Thiele modulus values, also virtually coincide for all pellet shapes.
Thus, essentially, if one performs computation for one pellet éhape, one has
simultaneously obtained the effectiveness factor for all pellet shapes.

Now, either as a result of preparation technique, which may well he
deliberate, or as a result of use, catalyst pellets develop non-uniform
activity profiles. We have recently heen attempting (1,2] to provide shape-
normalizations in the above sense, when the catalyst activity profile is non-
uniform. Various types of activity profiles were previously [1,2] shown
amenahle to such normalization. The present work brings us one step closer to

the eventual goal of including all possible types of activity profiles.

The responsibility for the wording and views expressed in this Adescriptive
summary lies with MRC, and not with the authors of this report.
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ON SHAPE NORMALIZATION FOR NON-UNIFORMLY ACTIVE CATALYST PELLETS -~ III
M. Morbidelli and A. Varma
1. INTRODUCTION

The shape normalization for non-uniformly active catalyst pellets, in
which an isothermal first-order reaction occurs, was examined extensively in
two previous papers {1,2]. Both the cases of negligible and finite external
mass transfer resistance were considered. The particular case of catalyst
activity profiles which become zero in a continuous manner somewhere within
the pellet or at the pellet external surface, specifically also with
negligible external mass transfer resistances, was however previously
excluded.

The pu.pose of the present communication is to develop a physically based
shape normalization which also includes this particular situation. In fact,
only the asymptotic slope of the effectiveness factor-Thiele modulus curves,
for large values of the Thiele modulus (i.e,, diffusion-controlled reqgime), is
found amenable to a perfect normalization. The absolute magnitude of the
effectiveness factor, even for large values of the Thiele modulus, is found to
depend still on parameters that characterize the specific activity profile
under consideration. For catalyst activity profiles which do not fit in the

category described ahove, the normalization developed here becomes identical

with that given by us earlier [2). A 1 ]
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2. ASYMPTOTIC BEHAVIOR AND SHAPE NORMALIZATION

Consider a catalyst pellet with ;n arbitrary given catalyst activity
distribution a(x), in which an isothermal first-order reaction occurs with
negligible mass transfer resistance external to the active catalyst zone. Let
us now examine the behavior of the effectiveness factor for larqe values of
the Thiele modulus.

It is well-known that in the diffusion-controlled regime, the reaction
occurs near the surface of the active catalyst zone, within a narrow reqion
whose width is proportional to the reciprocal of the Thiele modulus {3]. This
may also be illustrated qualitatively by the following argquments.

The distance, § covered by a diffusing reactant molecule within the
pellet can be evaluated from the relationship

5 = (ner)"? (1)
where D, is the effective diffusion coefficient, and T is the
characteristic time available to the reactant molecule for diffusing, before
it reacts. A reasonable estimate of T can be obtained by considering a batch
system, described by the material balance

= Fac (2)
with the initial condition: C = Co at t =0, In this equation, the
catalyst activity a is assumed constant during time. From the solution of
eqn (2):

C = coexp(-iit), (3)

the time-constant for the reaction is

T = 1/(ka). (4)

kM e <




For the diffusion-reaction problem, a would he replaced by ;s, the
volume average of a(x) in the active catalyst regqion where the reaction
occurs; suhstituting this in egn (1) gives

- V
- 2
8§ = (D /kag) ‘2. (5)

Now, introducing the dimensionless width of the reaction zone ry = §/R,
the expected relationship with the Thiele modulus is obtained:

D, .1
1r e /2 1
r, = =) 2=, (6)
§ REEG ¢

Note that ;6 is the volume averaqe value of the catalyst activity in the

reaction zone, (R-6)<€ x<€ R; 1i.e.,

J® atx)av
- R-S P
R-$

The definition of the Thiele modulus, egn (6), thus obtained is consistent
with that used previously {1] for non-uniformly active catalyst pellets; the
average value, ;6 here replaces the surface value, a(R) employed before,

Introducing the dimensionless space coordinate r = x/R, and noting from

eqn (6) that Ty + 0 as ¢ *+ », and therefore dvb = § dx for all pellet
shapes, eqn (7) reduces to
;6 -:_—- j‘ a(r)dr. (8)

6 1"'!'6

The effectiveness factor can bhe calculated, by definition, as the ratio
between the rate of reactant consumption in the actual reaction zone
(1"3 € r< 1), and the same quantity in the case of fast diffusion--in
which case the reaction occurs within the whole catalytically active region:

(Sxé)(kas)c

ﬂa =

vp(ka1)cs




where the suhscript a denotes the asymptotic value of the effectiveness

factor in the diffusion~controlled regime. ;1 is, similar to ;6' the ]

volume average catalyst activity in the entire catalytically active reqion
(which becomes the reaction zone in the case of fast diffusion; i.e., the

kinetic~controlled regime), 51 is therefore given by eqn (7), by replacing

§ by R, and this in dimensionless form reduces to

a ]’a(t)tndr. (10)

1 "TE%TT o

Note that if the catalyst activity profile a(x) is defined, as done before
{1,2], by the ratio between the local rate constant k(x) and its volume
averaged value i, then by definition, ;1 = 1 for all pellet shapes and 3
activity profiles, With such activity profiles, the volume average reaction

rate constant, in pellets of different shapes and different activity profiles,

is the same. Catalyst activity profiles of this type are hereafter called

conservative, since they are defined so as to meet the condition of active
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catalyst conservation.
In egqn (9), the reactant concentration C in the reaction zone can be
estimated as
«®
C Cs' (11)
since Te + 0 as ¢ * @, and the reaction zone in the limit shrinks to the

active catalyst zone surface. With this, eqn (9) gives

|

Sx6
a ® v ‘ 12
P

Also, Sx/vp = (n+1)/R, and 1, = §/R; and so

n, = ("*‘)'6‘6/a1° (13)
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If we now introduce a normalized Thiele modulus ¢, defined as

va, ka, 4 a
e sp51 (-D:i) /2..;%"5-1-
x°6 (]
and substitute eqns (6) and (14) in eqgn (13), then
n, = 10, (15)
Thus for different pellet shapes (i.e., n) and for different catalyst
activity profiles a(x), the asymptotic behavior of n for the diffusion-
controlled regime is brought together. Note that for a conservative activity
profile (i.e., ;1 = 1), the expression of the normalized Thiele modulus
given by eqn (14) differs from that used before [1,2] only in that a , the
volume average catalyst activity in the reaction zone, is used in place of the
catalyst activity at the outer surface of the catalytically active zone,
a(R).

From eqn (8), it is evident that Scis a function of the reaction zone
width, Ty and of the activity profile, a(r). Depending on the specific
characteristics of the latter, two different possibilities can arise, and
these are now identified.

Since we are considering the case of ¢ + ®, and therefore s + 0, the
activity profile a(r) may be approximated by its Taylor series around

Iy = 0 (i.ee, r = 1) truncated affer the first-order term:
a(r) = a(1) + a'(1)rg + O(r}) (16)
where a(1) and a'(1) are the values of catalyst activity and its first
derivative, respectively, evaluated at the outer surface of the active

catalyst zone (i.e., r = 1), Substituting eqn (16) in eqn (8), and

performing the indicated integration gives

Ag =all) +ar(irg/2 + O(r:).




' If a(1) # 0, then for rg > 0 (l.e., ¢ > =),

k -

derivative of alr) at r = 1,

itself;

The result that we wish to stress here is the following:

function of r6 and of the derivative of the activity profile, a'(1).

(18)

If, however, a{1) = 0, the limiting value of ;6’ for ry + 0, becomes a

If

the latter quantity is also null, then a depends on the first nonzero
$

i) if a(1)# 0, then ;6 is a function only of the activity profile

ii) if a(1) = 0, then ;6 depends also on r,, and therefore through
eqn (6) on the Thiele modulus, ¢ . For this reason, in the relationship

between na and ¢ given by eqns (14) and (15), the value of 56 also

affects the asymptotic exponent of the Thiele modulus, and not only the

multiplier as in the previous case.

2.1, Case of a(1) # 0.

Substituting eqn (18) in (14) gives

® = Vpa1 (l?a(ﬂ\ 1/2
S a(1) p '/
x e

which is the same as that obtained before [1,2].

From eqn (15),

n
a

(19)

= 1/0.

We do not pursue this case further, since it has been examined extensively

earlier (1,2].




2.2, Case of a(1) = 0,

In this case, ;6 is a function of r,, which depends on the specific
type of activity profile under consideration. We shall therefore focus on
a(r) = m(1-r)B (20)
which was examined before [1,2]. Note that for suitable values of m and
H ' B8, ean (20) may be used to approximate many activity profiles which are
‘ characterized by a(1) = 0.
Substituting eqn (20) in eqn (8) gives
a; = mr:/(8+1) (21)

which using eqn (6) leads to an expression of the reaction zone width:

D
3 8+1V1/(B+2)7 e Y1/(B+2)
- . r, = (&) (=) . (22)
] $ m ERz
; ' These two equations, together with eqns (14) and (15) give
= 2
1 n+l ¢ m V1/7(B+2) (kR =(B+1)/(B+42)
nod 2 (VO
a, e

a may be evaluated from eqn (10) for the specific a(r) gqiven by eqn (20):

(n+1)!
R (24
I (B+)
i=1

- 1
Finally, introducing ¢0 = R(k/De) A% a Thiele modulus based on the average

f rate constant and the characteristic pellet length, eqn (23) may he rewritten

in the form

n+1
M (B+l)
-2g (B+1)"C im=1
na = 0O mq n! (25)




where ¢ = 1/(8+2), q = (8+1)/(8+2), and n = 0,2 indicate the slab and
sphere geometries, respectively. Note that 1/2< g < 1, and so the asymptotic
behavior of the effectiveness factor as a function of the Thiele modulus is
with an exponent that lies between -1 and -2.

The exact asymptotic expression, ne obtained from the exact analytic

solution (reported in Table 5 of [2)) as ¢0 + ® jg:

n+t
‘ s M (B+i)
' -2g (8+2)°° I'(q) i=1

ne = ¢0 mg m) ni . (26)

A comparison of the two asymptotic expressions, given by egns (25) and (26),

shows that the exponents of the Thiele modulus are identical, but the

multipliers are somewhat different. This difference is examined next, but it
is first worth noting that eqns (25) and (26) are both valid for arbitrary

m and B, whether they satisfy the conservation condition or not.




3. NUMERICAL COMPARISONS

In order to determine the difference between the two asymptotic
expressions for n, let us define their ratio
Q =ne/na (27)

which, using eqns (25) and (26) is given as

B8c ' (q)

T(c) ' (28)

Q = (8+1)°(8+2)

a quantity that is a function gglz_of B, and not of pellet shape.

It may now be seen that @ + 1 as either B * 0 or B * ®, and so the
two asymptotic expressions match in both limits. The value of 2 as a
function of the activity profile parameter £ is shown in Fig. 1. It may be
observed that the maximum deviation of na from ne occurs at B = 4.5,
where the relative percentage error is 14.2%. Moreover, @ < 1 for all
positive -8, which indicates that na is an upper bound of the exact
asymptote n_e

A calculation of the effectiveness factor n, in the entire range of the
normalized Thiele modulus &, evaluated by using the exact solution (see
Table 5 of [2)), is shown in Fig. 2 for the slab (n=0) and sphere (n=2)
geometries, for B=0 and 3. As noted above, it may be seen that the
asymptotic slopes of the various n-® curves for large ¢ are identical, and
equal to -1. The absolute magnitudes of the asymptotes, however, depend on
the activity profile parameter 8, but not on pellet shape. 1t may also be
observed that the spherical pellet reaches the asymptotic value at relatively
larqger values of %, This is due to the presence, in the exact asymptotic
expression of the effectiveness factor for the sphere (see Table S of [2])), of

a term proportional to ¢;2, in addition to the leading term proportional to
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-2q 2g

¢, + Since -2 € -2g¢ -1, the term with 08 eventually dominates 082;
this feature, however, delays achievement of the asymptotic slope -1, Note
also that this effect becomes more significant at larger vlaues of 8.

It is worth reiterating that when a(1) = 0, the physically based shape
normalization developed here, brings only the asymptotic slopes of the
effectiveness factor - Thiele modulus curves together for various pellet
shapes and activity profiles; the absolute magnitude is not normalized
perfectly. A more accurate evaluation of the magnitude of the effectiveness
factor would require a more detailed description of the reactant concentration
profile close to the outer surface of the active catalyst zZone. This means
that the reaction time, T would be evaluated through a relationship more
accurate than that given by eqn (2), which takes into account both the
catalyst activity and the reactant concentration profile in the reaction
zone. Such a relationship, however, becomes the same as the starting point of

the present diffusion-reaction problem, and so the purpose of an a priori

shape normalization is defeated.

ST 2




4. EFFECT OF EXTERNAL MASS TRANSFER RESISTANCE
Let us now consider a pellet in which the active catalyst is located in

an inner core 0€ x < x2, while the balance x2 < x€ R is an inert

support. The activity profile thus has the form

a(x) for 0¢< x < X,
(29)

0 for x2 < x<R

where a(x) is an arbitrary qgiven distribution. If external mass transfer

L . resistance in the bulk phase is also taken into account, the problem reduces

to the one considered earlier in [2].

It was shown before [2] that the effectiveness factor can he expressed as

S 2 2
n = ':‘—+-s-2- ’t—+_° (30)
D x Bi Biint

-
A —— TP A ST . A RnAy oy VT

where nD is the effectiveness factor in the case of neqligible external mass
transfer resistance (i.e., both Bi = and E}nt =), and whose
asymptotic form for large ¢ is given by eqn (15) with Xq replacing R,

All the other quantities are defined as in (2], simply replacing catalyst

activity at the active catalyst zone surface, a(1) by the average value in :
the reaction zone, ;6' As a consequence, besides the normalized Thiele i
modulus defined by eqn (14), the normalized pellet characteristic length is

also modified, as

The variable ag also enters, through ean (31), definitions of the Biot

numbers Bi and Bi Note that if a(1) # 0, then due to eqn (18), all

int*
these quantities become identical to the corresponding ones in (2],




The effectiveness factor n, can now be represented as a function of its

normalized asymptotic value w, derived from eqns . (15) and (30) as

s 2 2
w =9 +—?-¥._-—+_° (32)
x Bi Biint

for all pellet shapes, activity profiles, and external mass transfer

resistances, Bi and Bi All the n-w curves reported in Fig. 2 of [2)

int’
are shown in Fig. 3, including also the curves obtained for the activity
profile (20) with 8 = 0, 0.5,1,2 and 3, for both the slab (n=0) and sphere
(n=2) qeometries, and the following set of values for Bi and siint=
5%°;%,10; 5,10, The consequent enlargement of the hatched zone is by the
lower region in Fig. 3. It may be observed that although the asmptotic
behavior, both for small and large ¢, is identical for all situations,
inclusion of activity profile (20) for which a(1) = 0 causes a significant

increase in the differences between the various n-w curves for intermediate

values of w. For example, the width of the hatched reqion at w=2 increases

from about 33% to slightly over 60%,

Finally, note that the particular case when both Bi and Bi are

int
infinite, shown previously in Fig. 2, is excluded in Fig. 3. 4
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S« EXTENSION FOR ARBITRARY REACTION RATE EXPRESSIONS

The procedure leading to the shape normalization, developed here for
first-order reactions, can also be extended to include arbitrary reaction rate
expressions, which exhibit positive-order as C * 0. This latter condition is
satisfied by all physically reasonable rate expressions, and simply assures
that the width of the reaction zone, near the surface of the active catalyst
zone, in the diffusion-controlled reqime decreases as the Thiele modulus
increases; i.e., rg * 0 as ¢ * =,

Consider then a general reaction rate expression r(c), the definition
of the Thiele modulus modifies, as usual [3]), to

1
r(c,) 2

008 R -D—é—- (33)
e s

while expression (12) for the effectiveness factor does not change, since from
eqn (11), «r(C) *» r(Cs) as ¢ + ®, Following the same steps described above
for a first-order reaction, it can again be concluded that n, = 1A as
L IR

In terms of the non-normalized Thiele modulus 00, this implies that the
asymptotic slope of the n-Oo curve for the catalyst acitvity profile (20) is
again -2g. This result is indeed confirmed by the numerical computations
reported hy Villadsen [4], for r(C) = EC/(1+KC)2. As before, the absolute
maqnitude of the asymptote of n for large 00 cannot he obtained exactly

for this activity profile.
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a(x)

k(x)

taa]

NOTATION

catalyst activity, k(x)/k ’ i
volume average catalyst acitvity
Piot number, ch/De

normalized Biot number, kcﬁlbe

Yo S2 . 14
normalized internal Biot number, [ f -———-dv] i
v s(y) i
2 :

1/(B+2)
reactant concentration
effective diffusion coefficieit
(B+1)/(B+2)
local rate constant

volume average rata Jorsiadt

external mass transfer coefficient
parameter characcerizing activity profile

integer characteristic of pellet geometry; 0 €for infinite slab,
1 for infinite cylinder, 2 for sphere

dimensionless width of the reaction zone

characteristic pellet dimension, half-thichness (n=0), radius
(n=1,2)

normalized pellet dimension, vp/szsa
pellet surface area at location x
pellet surface area at x = X,

pellet external surface area

pellet volume

distance from center of pellet; reqions 0 € x < x, and x_* x ¢ R
are inert, while region x, <x< X, is catalytically active,

normalized distance from center, x/ﬁ

R/R
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Greek Symbols
8 parameter characterizing the activity profile
8 width of the reaction zone
e Gamma function
n effectiveness factor
nD effectiveness factor for the Dirichlet problem
¢ Thiele modulus, nua?ﬁ/ne)"2
00 Thiele modulus based on volume average rate constant, R(E/De) yb
¢ normalized Thiele modulus, defined hy eqn (14)
T characteristic time for diffusion
W parameter defined by eqn (32)
e ne/na
§ Subscripts
: a asymptotic value
e asymptotic value of exact analytic expression
s surface of catalytically active zone
$ reaction zone
]
2
!
.
o
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pellets is developed. It is based on the volume averaqe of catalyst activity
in a thin reaction zone near the external surface of the active catalyst
reqion, wherein the reaction occurs in the diffusion-controlled regqime. This
normalization permits inclusion of those catalyst activity profiles that
become zero at the external surface of the catalytically active region, which
, were excluded from previous normalizations. When the surface activity is

‘ nonzero, results reduce to those ohtained earlier [1,2]. The normalization
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20, Abstract (continued)

provides exactly the slope of the effectiveness factor - Thiele modulus
curves, for all pellet shapes and activity profiles, in the limit of
diffusion-control. The development is initially made for first-order
reactions, and then generalized to include arbitrary reaction rate

expressions.
discussed,

Effects of finite external mass transfer resistances are also
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